Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

David G. Billing,*

Neil J. Coville, Joyce Lesia and Muhammad D. Bala

School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits 2050, South Africa

Correspondence e-mail:
dave@aurum.wits.ac.za

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.020$
$w R$ factor $=0.047$
Data-to-parameter ratio $=19.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Tricarbonyliodo($\boldsymbol{\eta}^{5}$-methylcyclopentadienyl)tungsten

The title complex, $\left[\mathrm{W}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{CH}_{3}\right) \mathrm{I}(\mathrm{CO})_{3}\right]$, lies on a crystallographic mirror plane, with only one half-molecule per asymmetric unit. This four-legged piano-stool tungsten complex is strained at the W atom, with the trans- $\mathrm{C}-\mathrm{W}-\mathrm{I}$ angle $\left[130.93(18)^{\circ}\right]$ larger than the cis- $\mathrm{C}-\mathrm{W}-\mathrm{C}$ angle [111.1 (3) ${ }^{\circ}$]. A possible trans influence due to a larger π back-bonding is marginal, with an insignificant difference between the $\mathrm{W}-\mathrm{C}$ bond length trans to I $[1.984$ (6) \AA] and the other $\mathrm{W}-\mathrm{C}_{\mathrm{CO}}$ bond lengths $[1.996$ (5) \AA].

Comment

The title compound, (I), was prepared as part of our ongoing interest in the coordination and solid-state reactivity of distorted square-pyramidal complexes with a cyclopentadienyl group sitting at the apex position (Smith et al., 1996). In an earlier study on a related complex, viz. $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{W}(\mathrm{CO})_{3} \mathrm{Cl}$ (Bueno \& Churchill, 1981), no clear evidence for a trans influence by Cl on the $\mathrm{W}-\mathrm{C}_{\mathrm{CO}}$ bond length was observed. In this study, a marginal trans effect due to an increased π backbonding of the carbonyl ligand trans to I was detected, with the $\mathrm{W}-\mathrm{C}_{\mathrm{CO}}$ bond length trans to I being 1.984 (6) \AA and the $\mathrm{W}-\mathrm{C}_{\mathrm{CO}}$ bond length trans to CO being 1.996 (5) \AA. Interatomic angles and distances agree with those reported for similar compounds (Töfke \& Behrens, 1987). A mirror plane runs through the molecule, with the iodide ligand eclipsed by the methyl ring substituent, giving an $\mathrm{I}-\mathrm{W}-\mathrm{C} 4-\mathrm{C} 9$ torsion angle of 0°.

(I)

Experimental

The title complex was prepared by a modification of a general procedure (Piper \& Wilkinson, 1956). A dimethoxyethane suspension of $\mathrm{W}(\mathrm{CO})_{6}$ and $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{Me}$ was refluxed for 24 h , cooled to room temperature and iodine was added to the solution with continued stirring. After 3 h , the solvent was removed in vacuo. Extraction with hexane afforded the title compound as orange needles. X-ray quality crystals were obtained at room temperature by crystallization from pentane. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{~cm}^{-1}\right) v_{\mathrm{CO}}: 2031(s), 1951(s)$.

Crystal data

$\left[\mathrm{W}\left(\mathrm{C}_{6} \mathrm{H}_{8}\right) \mathrm{I}(\mathrm{CO})_{3}\right]$	$D_{x}=2.8 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=473.9$	Mo $K \alpha$ radiation
Monoclinic, $C 2 / m$	Cell parameters from 939
$a=13.5020(16) \AA$	reflections
$b=8.4577(10) \AA$	$\theta=2.9-28.3^{\circ}$
$c=10.1886(12) \AA$	$\mu=13.00 \mathrm{~mm}^{-1}$
$\beta=104.949(2)^{\circ}$	$T=293(2) \mathrm{K}$
$V=1124.1(2) \AA^{3}$	Needle, orange
$Z=4$	$0.35 \times 0.12 \times 0.10 \mathrm{~mm}$

Received 8 March 2004

 Accepted 18 March 2004 Online 27 March 2004
Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
$T_{\text {min }}=0.165, T_{\text {max }}=0.273$
3934 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.047$
$S=1.06$
1485 reflections
75 parameters
H -atom parameters constrained

1485 independent reflections
1363 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.022$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-12 \rightarrow 17$
$k=-11 \rightarrow 11$
$l=-13 \rightarrow 11$

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.021 P)^{2}\right.
$$

$$
+2.5564 P]
$$

where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.80 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.57 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.00169 (9)

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{W} 1-\mathrm{C} 1$	$1.984(6)$	$\mathrm{W} 1-\mathrm{I} 2$	$2.8460(5)$
$\mathrm{W} 1-\mathrm{C} 2$	$1.996(5)$	$\mathrm{C} 4-\mathrm{C} 9$	$1.504(9)$
$\mathrm{C} 2^{\mathrm{i}}-\mathrm{W} 1-\mathrm{C} 2$	$111.1(3)$	$\mathrm{C} 1-\mathrm{W} 1-\mathrm{I} 2$	$130.93(18)$

Symmetry code: (i) $x, 1-y, z$.

H atoms attached to aromatic C atoms were positioned geometrically and allowed to ride on parents during refinement, with $\mathrm{C}-\mathrm{H}=$ $0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}($ parent atom $)$. The disordered methyl H atoms were accounted for using a two-site model, in which the H atoms were placed geometrically and alowed to ride, with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (parent atom).

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:

Figure 1

View of (I) (50\% probability displacement ellipsoids); the symmetry code is as in Table 1.

SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The NRF (grant No. 2053379), THRIP, and the University of the Witwatersrand are thanked for financial support.

References

Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT-Plus (including XPREP and SADABS). Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
Bueno, C. \& Churchill, M. R. (1981). Inorg. Chem. 20, 2197-2202.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Piper, T. S. \& Wilkinson, G. (1956). J. Inorg. Nucl. Chem. 3, 104-124.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Smith, J. M., White, D. \& Coville, N. J. (1996). Bull. Chem. Soc. Eth. 10, 1-8. Töfke, S. \& Behrens, U. (1987). J. Organomet. Chem. 331, 229-238.

