Received 8 March 2004

Online 27 March 2004

Accepted 18 March 2004

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

David G. Billing,* Neil J. Coville, Joyce Lesia and Muhammad D. Bala

School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits 2050, South Africa

Correspondence e-mail: dave@aurum.wits.ac.za

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.007 \text{ Å}$ R factor = 0.020 wR factor = 0.047 Data-to-parameter ratio = 19.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tricarbonyliodo(η^5 -methylcyclopentadienyl)tungsten

The title complex, $[W(\eta^5-C_5H_5CH_3)I(CO)_3]$, lies on a crystallographic mirror plane, with only one half-molecule per asymmetric unit. This four-legged piano-stool tungsten complex is strained at the W atom, with the *trans*-C–W–I angle [130.93 (18)°] larger than the *cis*-C–W–C angle [111.1 (3)°]. A possible trans influence due to a larger π back-bonding is marginal, with an insignificant difference between the W–C bond length *trans* to I [1.984 (6) Å] and the other W–C_{CO} bond lengths [1.996 (5) Å].

Comment

The title compound, (I), was prepared as part of our ongoing interest in the coordination and solid-state reactivity of distorted square-pyramidal complexes with a cyclopentadienyl group sitting at the apex position (Smith et al., 1996). In an earlier study on a related complex, viz. $(\eta^5-C_5H_5)W(CO)_3Cl$ (Bueno & Churchill, 1981), no clear evidence for a trans influence by Cl on the $W-C_{CO}$ bond length was observed. In this study, a marginal *trans* effect due to an increased π backbonding of the carbonyl ligand trans to I was detected, with the W-C_{CO} bond length *trans* to I being 1.984 (6) Å and the $W-C_{CO}$ bond length *trans* to CO being 1.996 (5) Å. Interatomic angles and distances agree with those reported for similar compounds (Töfke & Behrens, 1987). A mirror plane runs through the molecule, with the iodide ligand eclipsed by the methyl ring substituent, giving an I-W-C4-C9 torsion angle of 0° .

Experimental

The title complex was prepared by a modification of a general procedure (Piper & Wilkinson, 1956). A dimethoxyethane suspension of W(CO)₆ and C₅H₅Me was refluxed for 24 h, cooled to room temperature and iodine was added to the solution with continued stirring. After 3 h, the solvent was removed *in vacuo*. Extraction with hexane afforded the title compound as orange needles. X-ray quality crystals were obtained at room temperature by crystallization from pentane. IR (CH₂Cl₂, cm⁻¹) ν_{CO} : 2031 (*s*), 1951 (*s*).

Crystal data $[W(C_6H_8)I(CO)_3]$ $D_x = 2.8 \text{ Mg m}^{-3}$ $M_r = 473.9$ Mo $K\alpha$ radiation Cell parameters from 939 Monoclinic, C2/ma = 13.5020 (16) Åreflections b = 8.4577 (10) Å $\theta = 2.9 - 28.3^{\circ}$ $\mu = 13.00 \text{ mm}^{-1}$ c = 10.1886 (12) Å $\beta = 104.949(2)^{\circ}$ T = 293 (2) KV = 1124.1 (2) Å³ Needle, orange Z = 4 $0.35 \times 0.12 \times 0.10 \text{ mm}$

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

Data collection

Bruker SMART CCD area-detector diffractometer	1485 independent reflections 1363 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.022$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Bruker, 1999)	$h = -12 \rightarrow 17$
$T_{\min} = 0.165, T_{\max} = 0.273$	$k = -11 \rightarrow 11$
3934 measured reflections	$l = -13 \rightarrow 11$
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.021P)^2]$

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.021P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.020$	+ 2.5564P]
$wR(F^2) = 0.047$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.06	$(\Delta/\sigma)_{\rm max} = 0.001$
1485 reflections	$\Delta \rho_{\rm max} = 0.80 \ {\rm e} \ {\rm \AA}^{-3}$
75 parameters	$\Delta \rho_{\rm min} = -0.57 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97

Table 1

Selected geometric parameters (Å, °).

W1-C1	1.984 (6)	W1-I2	2.8460 (5)
W1-C2	1.996 (5)	C4-C9	1.504 (9)
$C2^{i}-W1-C2$	111.1 (3)	C1-W1-I2	130.93 (18)
$C_2 = W_1 - C_2$	()	C1-w1-12	130.93 (18)

Extinction coefficient: 0.00169 (9)

Symmetry code: (i) x, 1 - y, z.

H atoms attached to aromatic C atoms were positioned geometrically and allowed to ride on parents during refinement, with C-H =0.93 Å and $U_{iso}(H) = 1.2U_{eq}$ (parent atom). The disordered methyl H atoms were accounted for using a two-site model, in which the H atoms were placed geometrically and alowed to ride, with C-H =0.96 Å and $U_{iso}(H) = 1.5U_{eq}$ (parent atom).

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus and XPREP (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure:

View of (I) (50% probability displacement ellipsoids); the symmetry code is as in Table 1.

SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

The NRF (grant No. 2053379), THRIP, and the University of the Witwatersrand are thanked for financial support.

References

- Bruker (1998). SMART-NT. Version 5.050. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (1999). SAINT-Plus (including XPREP and SADABS). Version 6.02. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bueno, C. & Churchill, M. R. (1981). Inorg. Chem. 20, 2197-2202.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Piper, T. S. & Wilkinson, G. (1956). J. Inorg. Nucl. Chem. 3, 104-124.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Smith, J. M., White, D. & Coville, N. J. (1996). Bull. Chem. Soc. Eth. 10, 1-8.
- Töfke, S. & Behrens, U. (1987). J. Organomet. Chem. 331, 229-238.